
JOURNAL OF COMPUTATIONAL PHYSICS 34, 184-201 (1980)

The Event Scheduling Problem in Molecular Dynamic Simulation

D. C. RAPAPORT*

Physics Department, Bar-llan University, Ramat-Gan, Israel

Received July 10, 1978; revised March 27, 1979

Molecular dynamics simulation studies of hard sphere and related many-body systems
tend to be heavy consumers of computer time. In order to perform event-driven simulations
of this kind in an efficient manner both the organization of the event list data structure
and the procedures for modifying its contents must be carefully designed. A highly efficient
event list structure based on the binary tree is proposed, and the algorithms for performing
the event scheduling and related operations are described. Numerical analysis of the per-
formancc of these algorithms reveals that they behave as if the event list were constructed
from randomly occurring events. Other considerations involved in improving the simulation
performance are discussed.

1. INTRODUCTION

The techniques of molecular dynamics computer simulation have, in recent years,
come to be regarded as essential tools for investigating the behavior of classical
many-body systems. The applications of these techniques cover a wide variety of
problems in solid- and liquid-state physics; recent reviews of the subject are to be
found in Refs. [I, 21.

Two distinct approaches to the simulation problem have been adopted. The
earlier method, due to Alder and Wainwright [3], is designed for use with model
systems whose interparticle interactions involve only step potentials. This kind of
simulation is ccevent-driven,” in the sense that the particles move with constant
velocities except for the moment when any pair of particles experience an impulse
interaction due to their having reached a potential step, for example, when two hard
spheres collide, or when two spheres enter or leave their mutual square well. The time
increments by which the simulation proceeds are the intervals between collisions, and
these are determined by the system itself.

The alternative method, introduced by Rahman [4], is suitable for systems with
smooth (differentiable) potentials, and requires solving the coupled differential
equations of motion using numerical finite difference techniques. In this approach
the simulation normally advances in fixed time steps and, consequently, the presence
of truncation errors must be taken into account. The two simulation methods yield

*Present address: Baker Laboratory, Department of Chemistry, Cornell University, Ithaca,
N. Y. 14853.

184
0021-9991/80/020184-18$02.00/O
Copyright 0 1980 by Acndcmic Press, Inc.
All rights of reproduction in any form reserved.

MOLECULAR DYNAMICS SIMULATIQN 185

results of comparable accuracy when applied to related systems such as the square
well and Lennard-Jones fluids, but no comparison of their relative ~~rnputati~~~~
efficiencies-defined as the ratio simulated time/computation time-has been under-
taken to date. En this article we will be concerned only with event-driven sirn~~at~o~s~

n a recent study of polymers constructed from chains of linked hard spheres [5] it
became apparent that at the core of the computer program performing the sirn~~a~~~~
he the computations necessary for maintaining the list of scheduled events. Even when
handled in an efficient manner, these computations consume a good 30 % of the total
processing time; thus the search for an optimal method is clearly justified, especially
in view of the fact that the computational requirements for typical molecuIar dy~a~cs
calculations tend to be measured in hours, even on the fastest of computers.

The purpose of this article is to describe a method for molecular dynamite simu!a-
tion, with particular emphasis on handling the event scheduling problem. In Section 2
we discuss the important aspects of a hard sphere fluid simulation; in practice the
method is often applied to more complicated systems, the sole proviso being that the
potential be steplike in nature. Section 3 reviews several event list data structures and
then proceeds to a detailed discussion of the structure eventually adopted. The
algorithms employed in manipulating the event list are presented in Section

merical analysis of the algorithm performance and the factors affecting the over
ency of the simulation are discussed in Section 5.

2. HARD SPHERE FLWD S~~U~AT~~~

In this section we review the principal features of the ~o~~c~la~ dynamics sirn~~at~~~~
of a hard sphere fluid, with the exception of the problem of managing the event hst
data structure, which will be discussed in subsequent sections. The marmer in w
the results of the simulation are used to estimate the thermody~a~~ and tram
properties is not described here; an extensive review of this subject is to be found in
PI. nly the simplest hard sphere system is considered; the extension to more complex
systems (e”g., square well fluids 131) is straightforward.

We consider a cubic of edge R containing iVA hard sphere atoms of diameter ci. In
order to reduce the effect of finite system size periodic boundary conditions are
employed. Since there are no long-range interatomic forces present the atoms follow
linear trajectories, but when two atoms i and j approach to a distance o they collide
elastically, with velocity changes

where rij = ri - rj and vij = vi - vj are the relative coordinates and velocity just
prior to the collision. As a consequence of the periodic boundary conditions, if atoms i
and j are dose to opposite boundaries of the region, collisions between i and the
appropriate periodic image ofj (or vice versa) can also occur.

At every moment in time the details of the next collision of each atom must be

186 D. C. RAPAF’ORT

known in order for the simulation to proceed correctly. The atoms move with constant
speed between collisions and, if at time t atoms i and j have coordinates ri and rj , they
will either never collide, or a mutual collision will ocur at time t + raj , where 7ij is the
solution of / rij + vij~Tij 1 = 0, namely,

3-g = -{bij + [b$ - Vi”(Yi”j - ~2)]“2}/v~j,

where bij = rij * vij. Clearly for a collision to be possible bdj < 0 and bij 3 vf&fj - G”).
Here once again the periodic boundary conditions require the determination of
whether it is the atoms themselves or their periodic images which are involved in
each collision.

In order to determine the possible future collisions of a particular atom each of the
NA - 1 other atoms of the system, and their images, must be regarded as potential
candidates. This means that the computation time required to follow the evolution
over a given interval of simulated time is 0(NA2). Since NA is typically 100-1000 and
sometimes even larger, and the computation of each 7ij is nontrivial, this simple
approach is clearly unworkable; a method of reducing the number of candidate atoms
to a value independent of iVA is required.

The answer is to divide the region into Lc3 cells whose edge length R/Lc exceeds the
diameter cr; collisions are then possible only between atoms in the same and immedia-
tely adjacent cells. The periodic boundary conditions are incorporated by extending
the term “cadjacent” to include appropriate pairs of cells abutting opposite boundaries.
Since the mean free path between collisions is normally much less than R it is clear
that the next collision of a particular atom will generally be with an occupant of the
same or a neighboring cell, and only these atoms need be examined. Nevertheless, in
the event that an atom travels a considerable distance before colliding, keeping track
of which cell the atom currently occupies will ensure that at some stage prior to the
collision the collision partner will be found in one of the adjacent cells. This requires
that in addition to determining future collisions it is also necessary to know when the
next cell crossing is to occur, and at each cell crossing to examine possible future
collisions with atoms in the newly adjacent cells. Following a collision the next cell
crossing of each of the atoms involved must of course be redetermined.

The computations which utilize the cells do this by referring to membership lists of
the atoms belonging to each cell. These lists can be constructed as in [2] or, alter-
natively, using a linked list approach as is the case in these simulations: corresponding
to each cell there is a pointer into a linked list connecting the atoms belonging to that
cell (a linked list is one in which the data are not stored in sequential order, but with
each datum is associated a pointer, to its successor-see Section 3). A further sub-
stantial reduction in computing time derives from reorganizing the task of coordinate
updating. When two atoms collide the need to update all of the NA atomic coordinates
can be avoided by assigning a local time variable to each cell, and only updating the
coordinates of the atoms belonging to the same cell(s) as the colliding atoms. Of
course the different local times must be taken into account when predicting future
collisions, but the result is that the time to process a single collision is now indepen-

MOLECULAR DYNAMICS SIMULATION 187

dent of NA . An alternative scheme for economizing the coordinate updatmg is
proposed in [2].

3. EVENT LIST STRUCTURE

e data structure employed to hold the event notices for scheduled cohisions and
rossings, etc.-the event list-should be designed to satisfy several criteria: It

must be ordered with respect to the time of occurrence of the events; addition to and
deletion of event notices from the list-corresponding to the scheduhng and can-
celing of events-should be performed efficiently by simple algorithms; and there
should be no storage wasted, in the sense that when an event notice is deleted the
space freed must be reusable by a subsequently scheduled event (the familiar ‘“garbage
collection” problem).

The simplest structure is a linear list. However, if consecutive event notices are
stored as physically adjacent records in a table, each addition or deletion will require
shifting an average of half the table contents. A more useful structure is the linked
list, in which the physical order of the event notices is of no significance, but a poi
included with each notice defines a time-ordered path through the structure. 1
linked list contains entries for N scheduled events the scheduling of an addit
event will require an average of N/2 search steps to locate the correct insertion position.
(If the list were stored in sequential order, rather than in linked form, a binary search
would supply the insertion position in O(log,N) steps, but subsequent shifting of the
notices still requires Q(N) movements.)

Since the nature of the simulation is such that the nu-mber of scheduled events
exceeds the number of atoms in the system, structures of the type just described,
which require O(N) operations to insert a new notice, are clearly not suitable for use
in a large molecular dynamics simulation. An enhanced version of the jinked list is
available which can, in principle, perform insertion in O(iV2) steps. The improve-
ment stems from the use of an ancillary pointer list which provides more rapid access
to the required location in the main event list 16, 71. An initial search of the pointer
list, whose length is chosen to be O(Wiz), provides the starting point for a sequentiai
search through a segment of the event list whose length is also O(iW). However, the
ancillary pointers must be fairly uniformly distributed over the event hst to ensure
S(N1/3) behavior and, because the event list has a high turnover rate, the red~st~~~~~~o~~
of the pointers may result in considerable overhead. Neither of the above references
analyzes this problem in detail; in fact the simulated results s own in [7] suggest a
weak O(N) dependence. An ahernativ e approach which is also expected to show
O(N1/2) behavior is discussed in Section 5.

An entirely different, and not immediately obvious, structure on which to base the
event list is the binary tree. This data structure consists of a set of nodes-one per
event notice--each of which contains the details of an event and when it is due to
occur, but in addition includes links to two successor nodes (Fig. 1). The tree represen-
tation of the event list may be formally defined in a recursive manner: Tf a particular

188 D. C. RAPAPORT

\
null link (no successor)

\
more nodes follow (not shown)

FIG. 1. Binary trees. The circles denote nodes and the line segments links; (a) shows part of a
typical tree, (b) a tree that has degenerated into a linear list.

node represents an event due to occur at time te , then the left and right successor
nodes correspond to events occurring at times tl < te and tr > te . Note that one or
even both of the pointers may be null if the corresponding successor node is absent.
An extremely through discussion of trees is to be found in [8].

The tree representation of a particular set of event notices is by no means unique
and depends on the order in which the notices were added to the tree. The formal
definition given above does however provide the basis for defining the algorithms
which are used to add and delete notices. If an N-node binary tree is balanced, in the
sense that the distances from the root (the topmost node) to the extremities of all the
branches are about the same, then the search for the correct insertion location will
entail testing log,N(=1.39 In N) + O(1) nodes. In the unlikely case of a tree which
has degenerated into a quasi-linear form, as many as N nodes may have to be tested.
Justification for using a tree structure stems from the fact that it can be proved [9] that
if the scheduled event times are random then the average number of tests during inser-
tion is 2 In N + O(l), a value not too far from optimal. It turns out that in molecular
dynamics simulations the scheduled collision times tend to resemble a uniform
random number distribution--this is entirely reasonable since, over the entire system,
there is very little correlation between collisions on a short time scale. Numerical
analysis (Section 5) does indeed confirm that the tree retains the desired properties.

The simplest form of binary tree event list requires, in addition to the two pointers
to successor nodes, lnode and mode, that each node also include the scheduled occur-
rence time of the event, the quantity eventtime. There are also two data items con-
taining details of the event denoted by atype and btype; if the event is a collision, these
identify the atoms involved; if a cell crossing, then atype is the atom concerned and
btype indicates which of six cell faces is crossed. Other information, such as the
collision type in the case of a square well system, or the identification of an event in
which some measurement is to be made, can readily be included.

The addition of further pointers to the nodes is required to adapt the basic tree
structure for efficient molecular dynamics use. Node deletion (i.e., event cancellation)
will prove to be a frequently performed operation; to facilitate alteration of the links

between nodes when a node is deleted, an additional pointer, pnode, to the no
predecessor is defined (Fig. 2). An additional quartet of pointers is added for the
following reason. When atoms i and j collide all nodes involving i or j must be re-
moved from the tree. The alternative to having to undertake an exhaustive search of
the tree to locate these nodes is to link together all nodes which refer to events invol-

inods (8)

FIG. 2. The three link pointers connecting the nodes of the tree.

ving a particular atom. In practice, the collision event nodes involving atom i are di-
vided into two linked lists according to whether i appears in the atype or btyae position,
and the connection between the nodes is implemented by means of a doubly linked
circular list (Fig. 3) [lo]. Each collision node thus belongs to two circular lists, labele

FIG. 3. Doubly linked circular list.

“a” and “b,” and since the double linking requires a pair of pointers for each list, a
total of four pointers per node are needed. The circular lists are not ordered in any way,
and the manipulation of these pointers, referred to as alnode, arnode, blnode and
buznde, is covered in Section 4. Figure 4 summarizes the complete structure of a
single node,

pnoda

lnods mode

alnode

blnode +f- btyw -j- broads

FIG. 4. Schematic form of the complete node used in the molecular dynamics simulations. The
individual elements are described in the text. (This form is used in Fig. 5.)

190 D. C. RAPAPORT

The cell crossing event node is of similar form, but only a single atom is involved.
Since there is always exactly one cell crossing event scheduled for each atom i, the four
pointers &ode, etc., in the node are used to complete the two circular lists involving i.

At the start of the simulation the nodes are placed in a normal linked list-the
pool-and are withdrawn as required and linked into the tree. When a node is no
longer required it is returned to the pool. A typical event tree for a very small system
(NA = 7) is shown in Fig. 5. To simplify the algorithms, node zero serves as a fixed
pointer into the remainder of the tree, and is not used to represent an event. Nodes 1
through NA contain the cell crossing events for the corresponding atoms, and nodes

FIG. 5. The complete event list for a small hard sphere system (note that in the computer the
tree is stored as a linear array). The numbers in parentheses are the node numbers. The circular list
links are not drawn in full for reasons of’clarity, but are represented by -WI (indicating a link to
node n). The next event to occur is at node 11.

MOLECULAR DYNAMICS SIMULATION 191

IVA + 1 onward are used for collisions and other events. Note that if there are no
collisions scheduled in which atom i appears in the atype position, then the ‘“a’” hsk is
empty and the alnode and arnode pointers of node i both point to node i itself-‘; hkewise
for an empty ““15” list.

4. EVENT LIST ALGORITHMS

During the molecular dynamics simulation the event list is being contin~a~~~
referenced and modified. In this section we describe the algorithms used to support
the binary tree event list and the associated circular lists introduced in Section 3.

The two primary tasks involving the event list are the scheduling of a future event,
and determining the next event due. Each of these tasks is described below as a

ocedure; each in turn calls on other procedures to perform operations such as
nceling ev notices, supplying vacant nodes, etc. Specifically, the event sc~ed~~~

procedure S EDULE uses GETNODE to obtain a free node from the pool, an
ADDTREE to insert the node at the correct location in the tree; SCHEDULE itself
handles the circular list updating needed when a node is added. The text-event
procedure NEXTEVENT first searches for the earliest event notice in the tree; if t%s
turns out to be a collision CLEARCLIST is called to cancel future events i
the colliding atoms; and the now current event notice
CLEARCLIST scans a given circular list and deletes all
passes, using RETURNNODE to restore the nodes to
rehnks the tree pointers when a node is deleted.

The algorithms are presented using a simple pseudo1
constructs “begin .*- end” to delimit procedures, .r. then -.. dse ...') for co
tional execution, and “while ... do
form /c I.. */* Procedure names are in capitals for clarity, the names of variables are
in italics. Details of argument passing between procedures have been omitted since
they are very much language dependent.

rocedure SCHEDULE /c schedule event; arguments supplied inclu
scheduled time, event type, and atom(s)
involved; only collisions and cell crossings
are treated here, but other event types are
easily incorporated */

eventtype # celkrossing
then GETNODE (e)
dsr: e c bodynuma

atype (e) t bodynuma
hype (e) +- facenum

/* e denotes the new node */
/* cell crossing event uses node with same

serial number as atom (body~~ma~ */

/* facenum is a code for the cell face t
crossed; facenwn >
atoms) */

192 D. C. RAPAPORT

eventtime (e) t scheduletime
ADDTREE (e)
if eventtype = collision
then atype (e) t bodynuma

btype (e) +- bodynumb

I* atoms are numbered bodynuma and
bodynumb */

I* update circular lists containing atoms *I
alnode (e) +- bodynuma, arnode (e) +- arnode (bodynuma)
alnode (arnode (bodynuma)) t e, arnode (bodynuma) +- e
blnode (e) c bodynumb, brnode (e) t brnode (bodynumb)
blnode (brnode (bodynumb)) c e, brnode (bodynumb) +-- e

end
procedure GETNODE (n)
begin
if pool # 0

/* get node from pool */

then n +--pool, pool t rnode (pool)
else poolempty c ‘true’ I* pool empty; terminate run *I
end
procedure ADDTREE (n)
begin
q+O
if rnode (q) = 0
then rnode (q) -+- n

I* add node to tree *I

I* search for insertion position */

else q t rnode (q), found t 0
while found = 0 do I* found = 1 indicates search completed */

if scheduletime < eventtime (q)
then if lnode (q) # 0

then q c lnode (q) I* branch left */
else Znode (q) c n, found +- 1

else if rnode (q) # 0
then q +- rnode (q) I* branch right *I
else rnode (q) + n, found +- 1

endwhile
lnode (n) +- 0, rnode (n) +- 0,
m&e (4 - 4
end
procedure NEXTEVENT
begin
e t rnode (0)
while Z&de (e) # 0 do

e c Znode (e), endwbile

/* set tree links */

I* advance simulation to next event */

/* find earliest event; tree assumed nonempty *I
/* descend leftmost branch of tree */

timenow t eventtime (e)
bodynuma +-- atype (e)
if btype (e) < nbody

I* e denotes earliest event node */

I* what kind of event is it? */

MOLECULAR DYNAMICS SIMULATION 383

then eventtype t collision
~ody~u~b +- btype (e)
CLEARCLIST (bodymmza)
CLEARCLIST (bodynumb)

eke eventtype c cellcrossing
facenum t btype (e)
DELETETREE (e)

/* collision */

/* cancel all events involving these atoms *:i

I* cell crossing */

rocedure RETURNNODE (d)
begin

(d) -+-pool, pool + d

/* return node to pool *i

rocedure CLEARCLIST (i) /* remove all collision event nodes
involving atom i by traversing both
circular lists belonging to i */

wh&z alnode (d) f i do
d +- ahode (d)

I* start at cell crossing no
traverse ‘a’ circular list V/

bmode (blnode (d)) +- brnode (d) /* relink ‘b’ pointers *I
(bmode (d)) +- blnode (d)
TETREE (d), RETURNNODE (d), endwhile

alnode (i) +- i, arnode (i) +- i I* ‘a’ list now empty */
d-+-i /* start at cell crossing node and traverse

‘b’ circular list */

arnode (alnode (d)) t arnode (d) /* relink ‘a’ pointers C/

ODE (d), endwhile
/* “b’ list now empty */
/* cancel cell crossing */

mcedure DELETETREE (d)

if mode (d) =
then s +- Enode (d)

/* delete node from tree */
/* search for node following d in time

order; this node is to be linked
directly to pnode (d) when d is delete
the various cases which can arise are
shown in Fig. 6 *I

/* case (i); Znode (d) may
also be null *j

194 D. C. RAPAPORT

else if Inode (d) = 0
then s +- rnode (d) /* case (ii) */

else if Znode (mode (d)) = 0
then s +- mode (d) /* case (iii) */
else s +- Znode (mode (d)) /* case (iv) */

while Znode (s) # 0 do
s +- Znode (s), endwhile

pnode (mode (s)) tpnode (s) /* relink */
Znode (pnode (s)) +- rnode (s)
pnode (mode (d)) t s
mode (s) -+ mode (d)

pnode (Inode (d)) +- s, lnode (s) +- Znode (d)
p c pnode (d), pnode (s) c p
if lnode (p) = d
then lnode (p> +- s
else mode (p) +- s
end

(iv)
P

di: d ;’

I ,--. \
-,

I I’
:,/
8, I

,.‘I
/’ ,‘,

4

:

/’ ’
’ sf

:

r,) \
:

f- 4’
:

I’
I’

\-----2’

t link requiring modification

\
\ , replacement links

F%G. 6. Node deletion-the various cases arising in DELETETREE are shown. Nodes labeled
d, p, s are the deleted node, its predecessor, and the node immediately succeeding it in the time order.

5. NUMERICAL RESULTS

In order to assess the overall efficiency of the molecular dynamics technique a
series of numerical studies have been undertaken. While the main purpose of the
analysis is to examine the performance of the algorithms for manipulating the tree

MOLECULAR DYNAMICS SIMULATION 1%

structured event list, results have also been obtained relating
efhciency to the number of atoms, the reduced volume, and the n
which the region is partitioned.

The systems studied consisted of NA = 108, 256, and 500 hard sphere atoms, at
several reduced volumes. Each time a collision occurred during the sirnu~at~o~ a
record was made of the number of atoms tested (per atom) while

ossible future collisions with each of the two colliding atoms (v
number of coliisions which could actually occur and which
(I&). Likewise, following a cell crossing, the numbers of atoms in the newly adjacent
cells tested for future collisions (&& and collisions scheduled (&,,J were also
recorded. In addition, the numbers of search steps required for insertion and de~e~~~~
of event notices, the actual number of nodes in the tree, etc., were not
results were averaged at regular intervals; for intervals spanning several
collisions the averaged results showed no significant variation between inte

Results typical of those obtained prior to the averaging are shown in Fig
The histograms in Fig. 7 show the distributions of the quantities v&r) v”,
and v!Loss obtained during one of the simulations. Figure 8 shows the distributions of
the numbers of search steps required for insertion of a node (SJ when scheduhng an
event, fez determining the next event to occur (&J, and for the rehnking of pQi~ters
following the deletion of a node (Sa) corresponding to a canceled event. The de~~~~~5~~
of a search step in each of the three instances is the following: For insertion
single performance of the test “if scheduletime < eventtime (4)” (ADDTREE).
searching for the next event it is a single iteration of the loop “~~i~~ Inode (e)

3000

=;
2000

E

2

F

1000

0
(

TOTALS: 4767 collisions

1373 celi crossings

IO 20 30

NO. OF COLLlSiONS

FIG. 7. Histograms showing the number of possible collisions tested and scheduled (NA = 256,
reduced volume zi = 2.0).

196 D. C. RAPAPORT

NO. OF STEPS

FIG. 8. Histograms showing the number of search steps (defined in the text) for the various
event Iist operations (NA = 256, o = 2.0).

endwhile” (NEXTEVENT). In the case of node deletion (DELETETREE), a count
Sd = 1 is used to signify that one of the tests “if mode (d) = 0” or “if Znode, (d) = 0”
was true; Sa = 2 indicates that the test “if Znode (mode (d)) = 0” was true; and
finally Sa > 2 means that the test “while Znode (s) f 0” in the search loop was re-
peated Sd - 2 times.

A graph showing the average number of search steps required for node insertion
Si as a function of the average number of nodes in the tree m appears in Fig. 9. The
solid line represents the result of a least-squares fit to the data points; it has the
equation Si = 1.56 In JV + 2.00. The theory of random binary trees [9] predicts that
the average number of search steps is Si = 2 H,,,+l - 2, where H, denotes the 12th
harmonic number. For y1> 1, H, -In II + y + O(n-l), where y = 0.577... is the
Euler constant. Thus, for a random tree, the asymptotic behavior is given by Si -
2 In N - 0.85, and this is represented by the dashed line in Fig. 9. It is clear from the
graph that, over the range of tree sizes encountered here, there is little significant
difference between the observed N-dependence of Si and that predicted theoretically
for random trees. There is obviously no danger of the tree structured event list
degenerating into a quasi-linear structure for which insertion becomes an O(N) step
process.

A second quantity for which a theoretical result is available is the expectation value
of gid - 2, the number of times the search loop of the node deletion algorithm must
be executed. In principle this value could show an O(ln N) dependence, in which case
the relinking of nodes following a deletion would require considerable computation.
However, the theory predicts Sd - 2 -C 0.5 independent of N [9], and the measured

MOLECULAR DYNAMICS SIMLX,ATIQN 197

100 IO00

ii

FIG. 9. Mean number of insertion search steps Si vs mean tree size fi. The solid and dashed iines
are the least-squares and theoretical results, respectively. Typical errors are indicated. The data
correspond to the systems in Table I, and for given NA , v increases to the left.

value during the simulation was close to 0.3, so node deletion is not a problem. A
typical distribution of & is included in Fig. 8.

It is clearly of interest to ask how the tree structured event list compares with other
possible organizational schemes. Unfortunately there is an almost total lack of
information concerning the techniques used in other molecular dynamics studies and

eir performance. In a recent review of hard sphere molecular dynamics [2] the
techniques described are based on those used in the original computations [37 to~~t~~~
with certain enhancements, namely, the division of the region into cells, and a IIS
for reducing the computational effort by postponing the position updating ke
the method described in Section 2, this does not assign a local time variable to each
cell). No performance figures are given, however.

An outline of the method employed by Alder and co-workers (un~~bl~s~ed~~ in
which the computations related to the event list have an O(J$~~/~) 6:
kindly provided by an anonymous referee. The event notices are sto
insertion rather than in chronological order; the effort of determining
to occur next is reduced from an O(N) step process to one of O(IW2) steps by mainl-
taining an auxiliary list of iW2 soon-to-occur events which are extracted from t
main event list at intervals of W/2 events. Furthermore, a canceled event notice is not
removed from the list, but merely discarded when it becomes due. In comparing the
relative performance of different molecular dynamics a~gor~t~ms it is di&.~lt to
isolate the effect of the event list structure without an extensive analysis of program
behavior. But, insofar as the overall method described in this paper is concerned, 31
will be shown below that it produces an approximately threefold increase in LXXX
tion speed over that reported by Alder et al. [l I].

198 D. C. RAPAPORT

The alternative 0(N112) algorithm [7] mentioned in Section 3 does not behave as
expected, the probable reason for this being the overhead of maintaining the ancillary
pointer list; the complexity of this maintenance has not been studied either theoretical-
ly or empirically. However, with both this structure and the binary tree the most
frequently performed individual operation is the stepping from one node to the next,
either in the event list itself or in the ancillary pointer list; this operation must be
performed O(N1/z) and O(ln N) times, respectively, for each node insertion. Thus,
even though no detailed comparison of the two event list structures has been made, it
would appear that for a list of N = 1000 event notices the binary tree approach is
significantly more efficient; and this is without taking into account the additional
computations required to support the pointer list, a task not required for the tree.

The most meaningful quantity for describing the efficiency of the simulation, or the
ratio of simulated time to computation time, is the number of collisions simulated
per unit (e.g. hour) of computer time. The overall efficiency of the simulation is
dependent not only upon the structure of the event list but also on the processing time
required for a single event. The division of the region into cells eliminates any NA-
dependence of the collision computations, but introduces additional cell crossing
events which themselves require a certain amount of computation. For a given
system (i.e., NA and u fixed), varying L, can be used to attain optimal efficiency. If L,
is small (i.e., LC3 < NA) the number of atoms which must be examined when sche-
duling the future collisions of a particular atom can easily exceed 30, irrespective of
o (see Tables I and II). On the other hand, if Lc is large-its upper limit is set by the
requirement that the cell edge length R/L, exceed the diameter s-the mean cell
occupancy will be low and hence fewer atoms need be examined, but the additional
cell crossings which occur will lower the efficiency. At high density (e.g., u = 1.5) the
atoms tend to be spatially localized, so this effect can be ignored and the largest
allowed Lc used; but ,at lower densities (e.g., a = 32.0) it will be demonstrated below
that the efficiency is not monotonically dependent on Lc , and some intermediate
value of L, should be employed.

Table I summarizes some of the statistics of the simulation runs. The collision rates
given are for the IBM 370/168 computer. The tabulated quantity C&u-the average of
V& defined earlier-is seen to be approximately proportional to the mean cell
occupancy NA/Lc3. Both i& and I&~ (the mean of v&) are independent of NA as
expected. The average values of the quantities v’&,,,, and v&,,,, defined earlier are not
shown but are given by C&/l;&.oss w 2.5-3, IS;~oll/~&oss FZ 2-3.5 for the systems
shown in the table. Typical distributions of these quantities were shown in Fig. 7.

The effect of varying Lc for given Iv, and ZI is shown in Table II. While i&~ decreases
approximately as LT~, the number of cell crossings per collision (ncross/~zcon) increases
linearly with L, , and the collision rate exhibits a maximum at L, m 8, corresponding
to a mean occupancy of 0.2 atoms per cell. This behavior is a consequence of the
fact that the total computation time depends on both ~~~~~ and 7zcross . Since the
computation time associated with a single cell crossing is roughly one-sixth of that
required for a collision, the collision rate initially increases with Lc as the mean cell
occupancy drops, but later starts to decrease because the cell crossing events begin to

MOLECULAR DYNAMICS SIMULATION

TABLE I

Summary of the Mean Numbers of Collisions Tested and Schednled (i” coLl, Z&J per Atom Following .
a Collision; the Average Number of Cell Crossings per Collision (ptc~Os8/nc011), and the Collision Ratd

iv> = 408

1.5 4 44.1 5.2 0.24 530
2.0 5 22.0 3.1 0.27 840
4.0 6 12.5 1.5 1.03 980
8.0 8 5.3 0.6 2.89 930

NA = 256
1.5 6 30.5 4.5 0.15 690
2.0 7 18.9 2.9 0.29 920
4.0 a 12.5 1.5 1.01 1060
8.0 11 4.8 0.6 2.99 IOSO

l-f.4 = 500
1.5 8 25.7 4.2 5.17 710
2.0 8 25.1 3.3 0.26 740
4.0 11 9.3 1.3 1.11 lOlO
8.0 13 5.8 0.7 2.76 880

a Typical standard errors are in the range 2-3 for $,,r, and 0.7-2 for &i.
a In units of 105 collisions per hour of computation time.

TABLE II

e Effect of Varying L, for a System with N-4 = 108, li = 32.6”

L 4
VCOfl &oss ~COll I Rate

4 44.8 0.7 4.2 390
6 13.5 0.5 6.4 564
8 5.8 0.3 8.6 590

10 3.1 0.2 15.8 547
12 1.9 0.1 12.9 510

a The rate is highest at Lc m 8; the largest permitted L, is 13.

dominate the computations. Before undertaking extensive computations it is well
worth determining the optimal LC in order to maximize the collision rate; it seems
reasonable to conclude that ideally Lc3 > NA , a fact which has sot been stressed in
the literature.

The average of the collision rates in Table I is 0.85 x IO6 collisionsjhr. The simula-

200 D. C. RAPAPORT

tion program used to obtain these results was written in Fortran; the version used for
extensive production runs had the tree algorithms coded in assembler language and
runs 20% faster, i.e., at an average rate of 1.03 x lo6 collisions/hr. This can be
compared with a reported rate of approximately 0.25 x IO6 collisions/hr on a CDC
6600 computer [ll]. Measurements of the relative performance of the all-Fortran
version of the program on the two computers (in each case using the standard op-
timizing compiler) indicate that the IBM collision rate is 50% greater than the CDC,
thus the tree-based simulation is intrinsically a factor of 3 faster than that of [ll].
Insufficient information is available to point to a specific reason for this improved
performance, but presumably a good deal of it is due to the use of the tree structured
event list; especially since even the assembler coded version of the tree algorithms
consume some 30% of the total computational effort.

6. CONCLUDING REMARKS

In this paper we have described a scheme for performing hard sphere molecular
dynamic simulations. Particular emphasis has been placed on the data structure and
algorithms for handling the event list computations. The importance of a carefully
designed data structure is due to the fact that, even when the event list management is
performed efficiently, the processing requirements represent a considerable portion of
the overall computation time.

The algorithms have been designed with a view to minimizing computation time,
but some mention of the memory requirements is in order. Each event notice requires
40 bytes of storage to hold the necessary data and the pointers linking the node into
both the tree and the circular lists (Section 3). This requirement is in addition to the
memory needed for storing the atomic coordinates and velocities, and the tables
required to support the use of cells. The total storage required for the 500 sphere
system, including program, is 180 kbytes on the IBM 370. While this is by no means
excessive and larger systems could easily be handled by merely expanding the various
arrays, a limit is eventually reached where computation speed must be traded off
against memory requirements. The possible ways of reducing storage include replacing
the bidirectional links in the circular lists by unidirectional ones, use of a more
compact tree representation [8], and a reduction in the number of cells into which the
region is divided.

The system employed in this paper as a means for describing the molecular dyna-
mics method was the hard sphere fluid. The techniques are readily extended to handle
square well potentials, boundary walls which act as heat sources and sinks, and
coupled sphere systems such as polymer chains. Molecular dynamics differs from
other kinds of event-driven simulations, such as the transportation studies familiar
from operations research, in that the majority of events scheduled are canceled before
they are able to occur and consequently there is a high turnover rate in the event list,
but there is no reason why the efficient event list organization described here should

not prove useful in other applications.

MOLECULAR DYNAMICS SIMULATION

REFERENCES

1. B. J. ALDER, Amu. Rev. Phys. Chem. 24 (1973), 325.
2. J. J. ERPENBECK AXD W. W. WOOD, in “Modern Theoretical Chemistry”

Vol. 6B, p. 1, Plenum, New York, 1977.
3. B. J. ALDER AND T. E. WAINWRIGHT, J. Chem. Phys. 31(1959), 459.
4. A. R.AHMAN, Phys. Rev. 136 (1964), A405.
5. D. C. RAPAPORT, J. Phys. A 11 (1978), L213; see also J. Chem. Phys. 41(1979), 3299.
6. F. P. WYMAN, Comm. ACM 18 (1975), 350.
7. W. R. FRANTA AND K. M&Y, Comm. ACM20 (1977), 596.
8. D. E. KNUTH, “Fundamental Algorithms, The Art of Computer Programming,” Vol. I,

Sect. 2.3, Addison-Wesley, Reading, Mass., 1968.
9. D. E. K~vrw, “Sorting and Searching, The Art of Computer Programming,” Vol. 3, Sect. 6.22,

Addison-Wesley, Reading, Mass., 1973.
10. II. E. KNUTII[, “Fundamental Algorithms, The Art of Computer Progmmming,“Vo1. I, Sect. 2.25,

Addison-Wesley, Reading, Mass., 1968.
11. B.J. ALDER,D. M. GASS, AND T.E. WAINWRIGHT, J. Chem.Phys.53 (1970),3813.

